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Lipid rafts, defined as domains rich in cholesterol and sphingolipids, are involved in many important plasma
membrane functions. Recent studies suggest that the way cells handle membrane cholesterol is fundamental in
the formation of such lateral heterogeneities. We propose to model the plasma membrane as a nonequilibrium
phase-separating system where cholesterol is dynamically incorporated and released. The model shows how
cellular regulation of membrane cholesterol may determine the nanoscale lipid organization when the lipid
mixture is close to a phase separation boundary, providing a plausible mechanism for raft formation in vivo.
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I. INTRODUCTION

During the past decade, a large number of studies re-
vealed that a cell membrane is not the homogeneous and
passive bilayer described in the “fluid mosaic model” �1�, but
a lateral heterogeneous medium with a complex nanoscale
lipidic organization �2�. To provide a more accurate descrip-
tion, Simons and Ikonen �3� proposed the concept of rafts to
refer to lateral domains rich in saturated lipids and choles-
terol, dispersed throughout a phase rich in unsaturated lipids.
Such structures are estimated to be in the tens to few hun-
dreds nanometers range �4,5�, and are endowed with mem-
brane protein sorting and signal transduction functions �6,7�.
Furthermore, they have been recently unveiled as dynamic
and scale-dependent structures; namely, their size and stabil-
ity may dynamically change under specific signals or stimu-
lus, contributing to the diversification of cellular responses
�8–10�.

Domain formation in multicomponent systems is com-
monly associated with the existence of dissimilar affinities
between the components. Experimental evidence for strong
differential interactions of cholesterol with usual membrane
lipids is well known in monolayers and bilayers �11�, and is
generally manifested in massive phase separation in giant
vesicles �12,13�. Cholesterol, having a semirigid tail, has a
larger affinity for saturated lipids, and this is usually assumed
to be the driving force of raft formation in living cell mem-
branes. In phase separating systems, however, coexistent do-
mains continuously grow �minimizing the boundary energy�
until reaching, at equilibrium, a length scale of the order of
the system size. Thus thermodynamic arguments alone can-
not explain either the nanometric size of rafts, nor �and even
less� their active behavior. This prompts the use of dynamic
concepts to describe the behavior of cell membranes.

Nonequilibrium pattern formation in condensed soft mat-
ter �14� has attracted much attention of physicists, specially
when approaching the biomembrane context �15�. In contrast
to equilibrium structures whose wavelength is dictated only
by the interactions between the molecular components �16�,
the length scale of actively maintained patterns in labile con-
densed systems results from the competition of thermody-
namic forces and kinetic parameters accounting for transport
and relaxation processes �14�. We argue that this perspective
can be useful to explain the spatial characteristics of rafts in
biomembranes.

Cell membranes are continuously subjected to intro- and
extracellular fluxes involving energy and mass transport.
Among many others, recent experiments �8,9� revealed that
raft organization is extremely sensitive to cholesterol homeo-
stasis. Mammalian cells synthesize and transport cholesterol
to the plasma membrane, and at the same time, cholesterol is
continuously released to the external circulation �17�. In a
recent model presented by Foret �18�, lipid exchange with
the surrounding medium is proposed to lead to the formation
of stable finite size domains if simultaneously combined with
the lipid phase separation. A similar idea is proposed by
Turner et al. �19� for a system with three components �two
lipids and cholesterol� by means of an aggregation kinetics
scheme. Here, using a combined extension of the two afore-
mentioned proposals, we illustrate how cholesterol recycling
may regulate raft size in cell membranes at realistic biologi-
cal conditions. According to the proposed picture, cholesterol
fluxes and raft formation would be intimately connected, set-
ting a possible pathway of the cellular signal-response ma-
chinery: A given stimulus may modify cholesterol fluxes,
causing an alteration of the membrane raft organization that,
in turn, may change the membrane functionality as a cellular
response.

This paper is organized as follows. In Sec. II the model
approach is described and its kinetic equations are derived.
The linear stability analysis of these equations is performed
and the main results are presented in Sec. III. Numerical
simulations are carried out and some representative results
are shown in Sec. IV. We conclude with a brief summary in
Sec. V.

II. MODEL

Our approach is based on analytical and numerical treat-
ments of a simple nonequilibrium model for a ternary mem-
brane subjected to a continuous recycling of one of the com-
ponents. Two kinds of generic lipids, saturated �A� and
unsaturated �B�, fully occupy a 2D triangular lattice, � being
the molar fraction of saturated lipid. The third component,
cholesterol �C�, is allowed to reside intercalated in the cor-
responding honeycomb lattice �see Fig. 1�, c being its occu-
pancy fraction. The membrane molar fraction of A, B, and C
components are � / �1+c�, �1−�� / �1+c�, and c / �1+c�, re-
spectively.
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The free energy of the system in units of kBT reads

F��,c� = N� � f��,c� +
�

2
����2�ds , �1�

where the integration is performed over the membrane area,
N is the number of lipids per area, and the square-gradient
contribution is the energy cost associated with a nonuniform
lipid distribution. Line tension � can be estimated from
Cahn-Hilliard theory �20� as �	 1

2ul0
2, where u is the typical

interaction energy �on the order of kBT�, and l0 is the char-
acteristic interfacial width here considered on the order of a
few molecular diameters �l0	5 nm�. The application of con-
cepts from regular solution theory �21� to the proposed lipid
and cholesterol lattices leads to the following local mean-
field free energy density,

f��,c� = � ln��� + �1 − ��ln�1 − ��

+ 2c ln�c� + 2�1 − c�ln�1 − c�

+ ZabWab��1 − �� + ZcWcc�1 − 2�� . �2�

The first four terms are the entropic contributions of both
lattices �having the cholesterol lattice twice the number of
sites than the lipid lattice�, and the fifth and sixth terms ac-
count for the lipid-lipid and cholesterol-lipid interactions, re-
spectively. Wab is the difference between the interaction en-
ergy of a pair AB and the average of interaction energies of
pairs AA and BB. The interaction of cholesterol with the lipid
mixture is denoted Wc, accounting for the energy cost of a
BC pair, and for simplicity, assumed equal to the energy gain
of a pair AC. Both interaction parameters are taken to be
positive. Zab=Zc=6 are, respectively, the coordination num-
bers of the lipid and cholesterol lattices for a given lipid
molecule. Notice that in Eq. �2�, for simplicity, only lipid-
lipid and cholesterol-lipid interactions are taken into account.
Coherently, the absence of cholesterol-cholesterol interac-
tions allows us to neglect a square-gradient term for the cho-
lesterol distribution in Eq. �1�. Inclusion of such interactions
does not substantially modify the main results presented in
this paper.

Temporal evolution of the compositional fields is obtained
by applying the constitutive relations from linear nonequilib-
rium thermodynamics, and mass balance equations to give
�22�

��

�t
= D�� · ���1 − �����

�� , �3�

�c

�t
= D�� · �c�1 − c���c

�� + Jex�c� , �4�

where D is the molecular lipid and cholesterol diffusivity.
The exchange term Jex�c� describes a generic cholesterol re-
cycling process in the membrane. We consider a homoge-
neous intake flux of cholesterol from the cytoplasmatic me-
dium with frequency Jin, and a release of cholesterol to the
external circulation with frequency Joutc. This results in
Jex�c�=−J�c− c̄�, where c̄=Jin /Jout is taken to be the aver-
aged cholesterol fraction in the membrane, and J=Jout is as-
sumed to be the characteristic recycling frequency. Notice
that the conservation of the total amount of cholesterol c̄ as
proposed, is the simplest way to introduce a unique time
scale J−1 for the recycling process. Such a time scale, rather
than a detailed description of all possible cholesterol trans-
port processes through the membrane, is the relevant param-
eter of the model. The chemical potentials, �i, are written as
the functional derivatives of the free energy in Eq. �1� with
respect to the corresponding variables,

�� =
�F��,c�

N��
, �c =

�F��,c�
2N�c

, �5�

leading to the final kinetic equations

��

�t
= D�� · ���� + ��1 − ���wl��� + wc�c� − ��3� ��� , �6�

�c

�t
= D�� · ��c� + c�1 − c�wc���� − J�c − c̄� , �7�

where wl=−2ZabWab and wc=−2ZcWc.

III. LINEAR STABILITY ANALYSIS

Some important results can be anticipated from the linear
stability analysis of the model equations. The one-
dimensional linear stability of the stationary homogeneous
solution ���x�= �̄ ,c�x�= c̄� is tested by adding small wave
perturbations �� exp���q�t+ iqx� and �c exp���q�t+ iqx�,
and linearizing Eqs. �6� and �7�. The growth rate ��q� is
calculated as the largest eigenvalue of the Jacobian resulting
from the linearization matrix. Hereafter, �̄ and c̄ refer to the
total mean lipid and cholesterol variables, respectively.

In the absence of fluxes the critical condition for equilib-
rium phase separation is expressed in terms of the parameter
A,

A = − 2 − wl�� + 
�wl���2 + 4wc
2��c�, �8�

where we have simplified ��= �̄�1− �̄� and c�= c̄�1− c̄�. For
A�0 the stability analysis does not predict any unstable
mode ���q��0 ∀ q�, resulting in a homogeneous mixture of
the three components. When A�0, the large wavelength

FIG. 1. Lipid lattices used as the starting point of our model.
Saturated and unsaturated lipids fully occupy the triangular lattice
of circular nodes. Cholesterols are intercalated between the lipids
and occupy part of the cross nodes forming the honeycomb lattice.
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modes �small q� become unstable leading to complete phase
separation �Fig. 2�. However, when fluxes are applied to the
latter case, the growth rate ��q� is shifted down and the
largest wavelength modes are then stabilized, so that segre-
gating domains are predicted to stop growing at a given size
determined by the smallest unstable q=q− �see Fig. 2�. By
expanding ��q� up to second order on q2 one may estimate
the smallest unstable mode to be

q−
2 	

2J

DA� A + 2

2 + 2wl��
+ 1� . �9�

This estimation is exact when the gradient term in Eq. �1� is
neglected. Consideration of such a term �as it is done in Fig.
2�, or even higher order gradient contributions, increases the
estimated value for q− �23�.

The mechanism leading to nonequilibrium pattern size se-
lection is outlined in Eq. �9� as the competition between the
short-scale ordering effect of phase separation �denominator�
and the large-scale mixing effect of the cholesterol traffick-
ing �numerator�. Weak thermodynamic phase separation
combined with fast enough cholesterol recycling may lead to
stationary domains at the nanometric scale. In Fig. 2 we have
chosen a 2:3 molar ratio of saturated-unsaturated lipids ��̄
=0.4�, a 28.5% of cholesterol in the membrane �c̄=0.4�, and
a usual diffusivity D=1 �m2 /s �24�. Lipid-lipid differential
interactions in membranes are typically small, Wab	0.1 at
T=35 °C �25�, insufficient to promote phase separation.
However, preferential interaction of cholesterol with satu-
rated lipids, Wc	0.3 �25�, places the system in a two-phase
region of the phase diagram but close to the phase separation
boundary. In our analysis, this is quantified by a positive but

small value for the parameter A. This choice is not arbitrary,
since membrane lipid mixtures are generally accepted to be
very close to a phase separation boundary �8�. In this situa-
tion, biological cholesterol exchange frequencies of the order
of the s−1 �26� lead to structures at realistic nanometric
length scales typical of rafts. In Fig. 2 we show how for J
=1, 5, and 8 s−1, the predicted characteristic lengths are
about 650, 300, and 240 nm, respectively. From values of the
growth rates in Fig. 2 we can also estimate that the time scale
for the formation of the stationary nanostructures lies in the
range of the fraction of a second.

IV. NUMERICAL RESULTS

Going beyond linear stability analysis, we numerically
solve Eqs. �6� and �7� in a two-dimensional square lattice of
256	256 sites with periodic boundary conditions. The mesh
size is 
x= l0=5 nm, so that each site contains about 50 lipid
molecules, validating the coarse-grained nature of the com-
positional order parameters � and c. The spatial derivatives
are calculated by adopting a simple centered scheme, and a
first-order Euler algorithm with time step 
t=2.5	10−6 s is
used for the temporal integration. Simulations are started
from a homogeneous distribution ���r��= �̄ ,c�r��= c̄�, slightly
perturbed with local variations of �1%. In Fig. 3 we present
the numerical simulations with the same parameter values as
in Fig. 2. As a generic behavior, the system is segregated in
coarsening circular domains rich in cholesterol and saturated
lipids �large � and c�. According to the prediction of the
linear stability analysis, in the presence of cholesterol recy-
cling the domain growth is halted at a finite and characteris-
tic size that depends on the flux rate. Notice that in our
simulations a sort of ordered state in the long-time domain
distribution is observed for the nonequilibrium cases. This is
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FIG. 2. Growth rates ��q� are plotted for the cases D

=1 �m2 /s, Wab=0.1, �=12.5 nm2, and �̄= c̄=0.4. In the absence
of fluxes we compare two different levels of lipid-cholesterol inter-
action �Wc=0, solid, and Wc=0.3, dotted�. For the case with Wc

=0.3 we compare the effect of different flux rates �J=1 s−1, dashed,
J=5 s−1, long-dashed, and J=8 s−1, dot-dashed�. Fluxes eliminate
unstable modes at small wave numbers q�q−, selecting a charac-
teristic length L=� /q−. All curves decay to negative values at large
q �not shown�.
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FIG. 3. Temporal evolution of the simulation patterns in a sys-
tem of 1.25 �m	1.25 �m obtained with the same parameters as in
Fig. 2. Each snapshot corresponds to a grayscale representation of
the parameter �. Darker regions correspond to higher values of the
displayed variable. The snapshots for c �not shown� follow the same
distribution as those of �. Only the last temporal snapshots for the
nonequilibrium cases �J�0� are practically stationary.
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not surprising at all since ordered spatial arrangements of
domains may appear in model systems displaying positive
growth rates in a band of wave numbers. The inclusion of
noise mimicking thermal and/or cholesterol fluctuations in
our equations would result in irregular domain shapes and a
disordered spatial domain distribution, without changing the
main result presented in this paper.

We quantitatively monitor the growth of the generated
domains in Fig. 3 by computing at different times the nor-
malized correlation functions for the � variable,

C�r� =
���r�� ���r�� + r��� − ���r�� ��2

���r�� �2� − ���r�� ��2
, �10�

where the brackets correspond to a spatial average for all the

sites r�� of the system. The correlation functions for c lead to
the same results. A usual estimation for the droplet radius is
given by the smallest distance R that satisfies C�R�=0. For
the equilibrium case we have found the scaling behavior
R�t�
 t
 with 
=0.289 �Fig. 4�, close to the asymptotic 1 /4
value predicted by the modified Lifshitz-Slyosov theory for
concentration dependent diffusivities �27�. In Fig. 4 we also
show how the active cholesterol flux stops after a few sec-
onds the coarsening process and leads to stationary domains
with an average final radius R=Rf of 117 nm for J=1 s−1,
72 nm for J=5 s−1, and 60 nm for J=8 s−1 �Fig. 4�. These
sizes are smaller than those predicted by the linear stability
analysis, as expected, the latter giving an upper limit for the
size of the generated structures. The inset in Fig. 4 confirms
the dependence of Rf �proportional to q−

−1� with the flux rate
J predicted in Eq. �9�.

Simulation results also evidence how the membrane can
dynamically adapt its lateral organization to changes of cho-

lesterol trafficking. If the membrane is successively simu-
lated under different flux rates �not shown�, the stationary
pattern distributions with the corresponding characteristic
domain size are obtained after a transient regime that lasts
reasonably a few fractions of a second. These transitions
present some interesting particularities. When increasing
cholesterol traffic rates, our simulations display transient vis-
cous fingering-like distortions of the initially large domains
that elongate and later fragment into smaller circular do-
mains. On the other hand, if the recycling frequency is de-
creased, domains grow following the ripening mechanism,
usual in phase separation phenomena. If the fluxes are
switched off, a complete equilibrium phase separation in two
segregated domains is observed.

V. CONCLUSIONS AND PERSPECTIVES

Equilibrium theoretical arguments fail when reproducing
the dynamical aspects of raft organization. Here, following
the ideas outlined in Refs. �18,19�, we have proposed a non-
equilibrium description of the cell membrane that captures
such a phenomenology at the realistic length and time scales,
and agrees with the idea of rafts as actively maintained struc-
tures �8,9�. A simpler model for a membrane consisting of
two phase separating lipids which are dynamically ex-
changed has been presented in Ref. �18�. In this model, how-
ever, lipid recycling rates leading to nanometric stationary
domains are about three orders of magnitude larger than the
biological ones. In our model, inclusion of a third component
�cholesterol� and the choice of realistic interaction param-
eters place the lipid mixture close to a phase transition
boundary. We demonstrate that it is really in this situation
that typical recycling rates �in this case of the cholesterol
component� result in nanometric structures. Another model
for raft formation based on similar nonequilibrium ingredi-
ents has been proposed by Turner et al. �19�, whose approach
follows a purely temporal aggregation scheme without spa-
tial resolution, quite different from ours but rather comple-
mentary.

The model presented here could be extended to retain a
higher complexity of cell membranes. For example, local
curvature effects coupled to phase separation are known to
dramatically slow down the coarsening process �28,29�. The
implementation of such an effect in our model would imply
that even smaller recycling rates result in nanometric do-
mains. Even more relevant, it is known that not only raft
organization affects protein sorting in the plasma membrane,
but reversely the presence of proteins affects rafts size and
stability �an interesting modeling approach is discussed in
Ref. �30��. The effect of membrane proteins is twofold. On
the one hand, GPI-anchored proteins locally stabilize
cholesterol-saturated lipid assemblies �4�, which may act as
nucleation centers for raft formation. Such an effect could be
incorporated into our model in a very simple way: The lipid
mixture could be considered below �instead of above� but
close to the phase boundary, and perturbations due to pro-
teins may locally drive the system across it �nucleation�. On
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FIG. 4. Log-log temporal evolution of the droplet radius, R, for
different fluxes and the same parameters as in Figs. 2 and 3. Each
curve is computed as the average over simulation patterns obtained
from five different initial random distributions. Inset: Rf

−1 vs J1/2

displays a linear dependence in agreement with Eq. �9�.
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the other hand, protein-protein interactions may result in raft
association at a larger scale, as it is seen in experiments with
cross-linking antibodies where rafts coalesce and can be even
optically visualized �7,31�. Further extensions of the pre-
sented model should include thus the role of proteins.
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